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Abstract
In this study, we implement and apply a region growing segmentation procedure based on texture to extract spatial landform

objects from a light detection and ranging (LiDAR) digital surface model (DSM). The local binary pattern (LBP) operator,

modeling texture, is integrated into a region growing segmentation algorithm to identify landform objects. We apply a multi-

scale LBP operator to describe texture at different scales. The paper is illustrated with a case study that involves segmentation of

coastal landform objects using a LiDAR DSM of a coastal area in the UK. Landform objects can be identified with the

combination of a multi-scale texture measure and a region growing segmentation. We show that meaningful coastal landform

objects can be extracted with this algorithm. Uncertainty values provide useful information on transition zones or fuzzy

boundaries between objects.
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1. Introduction

Object-oriented approaches to remotely sensed

image processing have become popular with the

growing amount of high-resolution satellite and

airborne imagery. Segmentation extracts spatial

objects from an image (Gorte and Stein, 1998;

Lucieer and Stein, 2002). It extends classification,

as spatial contiguity is an explicit goal, whereas it is

only implicit in classification. Fisher et al. (2004)

show that landform objects have a fuzzy nature. A
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straightforward approach to identify fuzzy objects is

to apply a fuzzy c-means (FCM) classification. This

classifier gives membership values of belonging to a

class. The main shortcoming of pixel-based

approaches, such as a standard FCM classifier, is that

these methods do not take into account spatial

relations between pixel values, also known as pattern

or texture. We argue that a texture-based approach

applying segmentation (i.e. including the spatial

component) can help to identify fuzzy objects.

Cheng and Molenaar (2001) proposed a fuzzy

analysis of dynamic coastal landforms, classifying

beach, foreshore and dune area as fuzzy objects. Some

classification errors, however, may occur as only
.
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elevation was used as diagnostic information. For

example, an area of low elevation behind the

foredune is classified as beach, whereas it is almost

certainly an area of wind-blown sand removal. Such

errors might be reduced by using spatial or

contextual information, i.e. by considering morpho-

metry or landforms. Cheng et al. (2002) and Fisher

et al. (2004) propose a multi-scale analysis for

allocating fuzzy memberships to morphometric

classes. This can be used to model objects that are

vague for scale reasons. Although this analysis fails

to identify positions of dunes, it is possible to identify

dune ridges and slacks and to monitor their changing

positions.

Regions with a similar reflection can easily be

identified as objects on a remote sensing image. In

case of a digital surface model (DSM) we can use

elevation similarity as a criterion to identify landform

objects. These objects, however, are often character-

ized by more than just elevation. A dune ridge, for

example, has a characteristic profile and/or shape,

which shows a unique texture in a DSM. Therefore, we

argue that texture is an important property of landform

objects and should therefore be taken into account in

landform analysis. We define texture as a pattern or

characteristic spatial variability of pixels over a

region. The pattern may be repeated exactly, or as a

set of small variations, possibly as a function of

position. There is also a random aspect to texture,

because size, shape, color and orientation of pattern

elements (sometimes called textons) can vary over the

region.

Texture measures are used to quantify texture. We

split texture measures into structural (transform-

based), statistical and combination approaches.

Well-known structural approaches are the Fourier

and wavelet transform. Several measures can be used

to describe these transforms, such as entropy, energy

and inertia (Nixon and Aguado, 2002). A well known

statistical approach is the grey level co-occurrence

matrix (GLCM) (Haralick et al., 1973) containing

elements that are counts of the number of pixel pairs

for specific brightness levels. Other texture descriptors

are Markov random fields (GMRF), Gabor filter,

fractals and wavelet models. A comparative study of

texture classification is given in Randen and Husøy

(1999). They conclude that a direction for future

research is the development of powerful texture
measures that can be extracted and classified with a

low computational complexity. A relatively new and

simple texture model is the local binary pattern (LBP)

operator (Pietikäinen et al., 2000; Ojala et al., 2002). It

is a theoretically simple yet efficient approach to grey

scale and rotation invariant texture classification based

on local binary patterns.

In this study, we implement and apply a region

growing algorithm based on textural information

from the LBP operator to extract landform objects

from a DSM. To identify these objects we argue that

texture is of utmost importance. A description of

texture reflects the spatial structure of elevation and

slopes, and is therefore indispensable in segmenting

an area into sensible landform units. We start by

modeling texture using the LBP operator at different

scales. Then, we form objects by seeded region

growing. We start at the finest pixel level and cluster

pixels to form objects, based on textural homo-

geneity. Growing of objects is stopped if a certain

threshold is exceeded. A similarity measure is used to

determine whether a pixel can be merged with an

object. This measure also provides useful informa-

tion on extensional uncertainty of objects, expressing

uncertainty in their spatial extent. We expect that

pixels in transition zones show higher uncertainty

values than pixels in core areas with homogeneous

textures. To illustrate the use of texture-based

segmentation for identification of landform objects,

we use a LiDAR DSM of a coastal area in northwest

England. This study builds on work of Lucieer and

Stein (2002) and Lucieer et al. (2003) and further

explores the use of multi-scale texture segmentation

to identify landform objects and to quantify their

extensional uncertainty.
2. Methods

2.1. Texture model—the local binary pattern (LBP)

operator

Ojala et al. (2002) derive the local binary pattern

(LBP) operator by defining texture T in a local

neighborhood of a grey scale image as the joint

distribution of grey levels of P image pixels:

T ¼ tðgc; g0; . . . ; gP�1Þ (1)
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where gc corresponds to the value of the centre pixel

(pc) of the local neighborhood and gi

(i ¼ 0; . . . ;P � 1) corresponds to the value of a pixel

in the neighborhood of pc. A circle of radius R with P
Fig. 1. LiDAR DSM (a) multi-scale circular pixel neighborhood set for dif

3D representation of a LiDAR DSM to show its value for describing lan
equally spaced pixels is applied to form a circular

symmetric neighborhood set (Fig. 1a).

Invariance with respect to the scaling of pixel

values or illumination differences is achieved by
ferent values of P and R; (b) circular neighborhood set draped over a

dforms.
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considering the signs of the differences instead of their

numerical values:

T� � tðsignðg0 � gcÞ; signðg1 � gcÞ;
. . . ; signðgP�1 � gcÞÞ (2)

This results in the following operator for grey scale

and rotation invariant texture description

LBPP;R
c ¼

XP�1

i¼0

signðgi � gcÞ (3)

The LBP
P;R
c operator thresholds pixels in a circular

neighborhood of P equally spaced pixels on a circle of

radius R, at the value of the centre pixel. It allows for

detecting patterns for any quantization of the angular

space and for any spatial resolution.

2.2. Multi-scale texture

The LBP
P;R
c measures the spatial structure of local

image texture, but discards contrast, being another

important property of local image texture. In most

cases, its performance can be enhanced by combining

it with a rotation invariant variance measure that

characterizes the contrast of local image texture,

defined by

VARP;R
c ¼

XP�1

i¼0

ðgi � mcÞ2;

wheremc ¼
1

P

XP�1

i¼0

gi

(4)

To include texture at different scale levels, we take N

neighborhood sets at different radii to calculate local

binary patterns (Fig. 1a). For each neighborhood set

we calculate LBP
P;R
c and VAR

P;R
c . We define a multi-

scale texture measure LBPN
c by

LBPN
c ¼

XN

n¼1

LBPn
c (5)

where n is a combination of P and R. Similarly, the

multi-scale variance measure VARN
c is calculated over

all neighbors at different radii. Fig. 1b illustrates why a

multi-scale neighborhood might be seen appropriate

for landform description.
2.3. Texture-based image segmentation

To identify and extract landform objects we apply a

seeded region growing image segmentation algorithm

(Horowitz and Pavlidis, 1976; Haralick and Shapiro,

1985). The initialization of seed pixels is an important

issue, because it strongly influences the segmentation

result. A random initialization of seeds is a first

possibility, however, for every segmentation a different

result would be obtained. Alternatively, we start

segmentation at locations with minimum local variance.

To calculate local variance we apply Eq. (4) with P = 8

and R = 1, corresponding to a 3 � 3 kernel, to every

pixel in the image. Next, we sort the list of pixels based

on variance and start segmentation at pixels with the

lowest variance. A similarity criterion is used to merge

adjacent pixels to form an image object. For a single

band, we use the difference between the mean value of

an object and the value of an adjacent pixel. For multiple

bands, the angle between the mean vector of an object

and the feature vector of an adjacent pixel is used. We

select the mean angle difference of all pixels in the

image as a threshold to determine whether a pixel can be

merged with an object.

After the initial growing phase, no more pixels can be

merged with existing objects with similarity values

lower than the selected threshold. Then, new seeds are

placed to form new objects. This process is continued

until all image pixels are merged with an object. In the

next phase, adjacent objects are merged according to the

same similarity criterion. The difference in object mean

values (single band) or the spectral angle between mean

vectors of objects (multiple bands) is used to assess

whether objects can be merged. Merging is continued

until stable image segmentation is obtained.

Information on texture might provide useful

information for identification of objects. We extend

the standard region growing algorithm by using the

multi-scale LBPN
c and VARN

c measures as a basis for

segmentation. The purpose is to identify objects based

on texture homogeneity. As pixels with a low

similarity are merged with an object with higher

uncertainty, we use pixel similarity measures to depict

extensional uncertainty. The similarity measure is

scaled and inversed to obtain a normalized uncertainty

value between 0.0 and 1.0. Transition zones between

objects can be identified with this uncertainty

measure.



A. Lucieer, A. Stein / International Journal of Applied Earth Observation and Geoinformation 6 (2005) 261–270 265
3. Case study

3.1. Study area: the Ainsdale Sands

The study area (6 km2) is on the coast of Northwest

England named Ainsdale Sands. The Ainsdale Sand

Dunes National Nature Reserve (NNR) totals 508 ha

and forms part of the Sefton Coast, on the northwest
Fig. 2. Digital surface model of the study area: (a) LiDA
coast of England. The NNR is within the coastal

special protection area. The NNR contains a range of

habitats, including intertidal sand flats, embryo dunes,

high mobile yellow dunes, fixed vegetated dunes, wet

dune slacks, areas of deciduous scrub and a

predominantly pine woodland. Management of this

area consists of extending the area of open dune

habitat through the removal of pine plantation,
R DSM; (b) 3D view of foredune and dune field.
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maintaining and extending the area of fixed open

dune by grazing and progressively creating a more

diverse structure within the remaining pine planta-

tion with associated benefits for wildlife (Ainsdale

Sand Dunes NNR, 2003). Therefore, mapping of this

coastal area is important for protection and manage-

ment of the environment and as a defense against

coastal flooding.

3.2. LiDAR DSM

In 1999–2001 the Environment Agency, UK,

collected high-resolution LiDAR imagery, and simul-

taneously, acquired hyper-spectral compact airborne

spectral imager (CASI) imagery (one flight each year).

Individual measurements are made on the ground at

2 m intervals for LiDAR and 1 m resolution for CASI.

In this study, the LiDAR DSM of 2001 is used (Fig. 2).

These images, geometrically corrected by the Envir-

onment Agency, are spatial composites of multiple

flight strips. The area covered by these images is

approximately 6 km2.

3.3. Segmentation of landforms from a LiDAR DSM

In our initial coastal landform analysis of the

Ainsdale Sands, we performed a hierarchical splitting

segmentation based on the joint LBPc;j, VARc

distribution (Lucieer et al., 2003). We selected the

following four landform classes: beach flat, dune,

dune ridge, and woodland.

Fig. 3a shows the result of this supervised

segmentation of a 512 � 512 pixel subset of the
Fig. 3. Supervised texture-based segmentation: (a) segmentation result bas

classes; (b) related uncertainty for all object building blocks.
LiDAR DSM of the study area. Four reference areas of

40 � 40 pixels were selected for training. Values for P

and R were 8 and 1, respectively. An accuracy

assessment of the segmentation results provided an

overall accuracy of 85.59% and a Kappa coefficient of

0.81. Object uncertainty values provided useful

information on the locations and extent of transition

zones (Fig. 3b).

3.4. Multi-scale texture measures from a LiDAR

DSM

Our segmentation results (Lucieer et al., 2003)

provided an initial coarse segmentation of the area into

four general landform classes. One of the main

shortcomings of this algorithm was the scale on which

the texture model operated. We used one neighbor-

hood set with P = 8 and R = 1 to calculate the texture

measures. We have concluded, that to identify

landform objects, one has to model the local pattern

at different scales, i.e. for different values for P and R

to describe local patterns at different radii. For

example, the characteristic pattern of a dune ridge

might be described by combining several circular

neighborhood sets. To better describe landform

objects, LBP
8;1
c , LBP

8;5
c , LBP

8;10
c and VAR

8;1
c ,

VAR
8;5
c , VAR

8;10
c values are calculated for every

pixel, corresponding to three circular neighborhood

sets with 8 neighbors at radii of 1, 5, and 10 pixels

respectively. Then, LBP
P;R
c values are summed to

derive LBP3
c. Similarly for VAR3

c, the variance of the

pixels in all three sets is computed. Total variance is

then assigned to the centre pixel of a local
ed on the joint LBPc;j and VARc distribution showing four landform
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Fig. 4. Texture measures based in LiDAR DSM, shown in Fig. 2a: (a) image of LBP
8;1
c values; (b) image of LBP

8;5
c values; (c) image of LBP

8;10
c

values; (d) image of VAR
8;1
c values; (e) image of VAR

8;5
c values; (f) image of VAR

8;10
c values; (g) summed LBP image with LBP3

c values; (h)

image of total variance in three neighborhood sets VAR3
c.
neighborhood. The result of these operations is given

in Fig. 4. Landforms are more pronounced in these

texture images. LBP3
c and VAR3

c images are

combined with the DSM to form a three-band

composite as input for the region growing algorithm

(Fig. 5a).
3.5. Texture-based region growing

For identification of landform objects, we applied a

texture-based seeded region growing algorithm. As a

similarity criterion, we used the angle between the

mean vector of an object and the feature vector of an
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Fig. 5. Region growing results: (a) color composite of elevation, LBP3
c and VAR3

c values used as input for region growing segmentation; (b)

objects as identified by the region growing algorithm. Color scheme is based on order of object ID-values; (c) object contours; (d) uncertainty

values for each pixel, depicting uncertainty in object spatial extent.
adjacent pixel. The selected threshold was 0.30

radians. Initially 6006 objects were formed. After

merging of neighboring objects in four iterations,

1446 objects remained. Fig. 5b shows the segmenta-

tion result. Segmentation was unsupervised, resulting

in objects with numbered labels representing the order

in which the objects were identified. Object bound-

aries were extracted and plotted on the original LiDAR

DSM for object identification (Fig. 5c). Additionally,

similarity measures for every pixel provided informa-

tion on extensional uncertainty. If a pixel has a high

similarity with an object, it has a small angle in feature

space and therefore a low uncertainty value. Dark

values in Fig. 5d depict pixels with high uncertainty.

Fig. 5b clearly shows landform objects. The beach

flat was segmented as one homogeneous object. Its

overall uncertainty value was low. Dune ridges were
identified correctly, they corresponded to the ridges as

observed in the field. The foredune was segmented as

one homogeneous object. The dune ridges, located

southeast of (and parallel to) the foredune are shown

as long thin objects in the segmented image (Fig. 5b).

In addition, several parabolic dune ridges can be

observed. The lower parts of these dunes were

segmented as separate objects. These lower objects

corresponded to blowout areas, as observed in the

field. The woodland area was different from the dune

area, as its variance in texture was high. This was

caused by the irregular LiDAR signal from the pine

trees. The woodland area was identified as a collection

of small objects, instead of a single homogeneous

object. Uncertainty values were high for these small

objects. In addition, uncertainty values were high in

boundary areas of dunes and dune troughs (Fig. 5d).
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High uncertainty values along the foredune show that

there is a transition zone from the foredune object to

the beach object.
4. Discussion and conclusions

In this study, we implemented and applied a region

growing algorithm to derive landform objects from a

LiDAR DSM based on image texture. Image texture

was modeled with the local binary pattern (LBP)

operator and local variance. We extended the standard

LBPc;j and VARc;j texture measures with a multi-scale

neighborhood set. Compared to a local texture

measure, a multi-scale approach provided a better

landform description. The combination of the multi-

scale LBPN
c and VARN

c measures and the original

elevation data, provided input for a region growing

segmentation algorithm. Initial seed pixels were

placed based on minimum local variance. These

seeds were used to form initial objects. Merging of

objects and adjacent pixels was based on a similarity

criterion of the angle between the mean vector of the

object and the feature vector of an adjacent pixel. After

all image pixels were assigned to an object,

neighboring objects were merged according to the

same similarity criterion. Since the procedure was

unsupervised, the identified objects were assigned

numeric labels.

As an application, a LiDAR DSM of a coastal area

in England was segmented into coastal landform

objects. The texture-based region growing segmenta-

tion provided meaningful objects from the LiDAR

DSM. Additionally, a pixel uncertainty value was

based on a similarity measure, i.e. a large angle

between an object mean vector and a neighboring

pixel feature vector was interpreted as a high

uncertainty value. These uncertainty values provided

valuable information about transition zones between

fuzzy objects.

In this study, an unsupervised approach was taken

towards object identification. The advantage is that it

provides an objective and automated technique for

landform mapping. The identified objects, however,

do not have class labels. Classification could be a

subsequent step in landform analysis. Landform

objects might be used in an object-based classification.

Information on elevation distribution, texture dis-
tribution, object shape, topology, and semantics could

be used to classify objects into meaningful landform

classes.

Validation of landform objects is a difficult task. In

this study, the most up to date and most accurate

elevation data available were used. The dynamic

nature of the coastal environment made validation

complicated, as an accurate landform map of the same

acquisition date was unavailable. Even if appropriate

reference data would be available, validation itself is

not straightforward. Object validation is most often

based on boundaries. As shown in this study, coastal

objects have a fuzzy nature, i.e. there are transition

zones between objects. Therefore, boundary matching

would be a difficult task as fuzzy objects only have an

arbitrary boundary. Therefore, object validation was

neither feasible nor meaningful in this study. From

field observations, however, it could be concluded that

good segmentation results were obtained. The

described texture-based region growing algorithm is

not restricted to coastal landform mapping. It can

easily be applied to other remote sensing images and

other study areas.
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